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Abstract

In this paper an eigenvalue analysis approach is employed to obtain the solutions of the Luikov system of linear

partial di}erential equations addressed to the most general type of boundary conditions[ The Luikov equations provide

a well established model for the analysis of various simultaneous heat and mass di}usion problems in capillary porous

bodies[ However\ analytical methods to achieve a complete and satisfactory solution of these equations is still lacking

in the literature because of noninclusion of the existence of a countable number of complex roots in almost all the

solutions[ A speci_c example on contact drying of a moist porous sheet with uniform initial temperature and moisture

distribution is considered[ The in~uence of the complex roots on the dimensionless temperature\ moisture content\ and

the local rate of drying is demonstrated[ A set of benchmark results is obtained for reference purposes[ Þ 0888 Elsevier

Science Ltd[ All rights reserved[

Nomenclature

am di}usion coe.cient of moisture in the material

ðm1 s−0Ł

aq thermal di}usion coe.cient ðm1 s−0Ł

cm speci_c moisture capacity ðkg "moisture# "kg "dry

body#−0 >M−0Ł

cq speci_c heat capacity ðJ kg−0 K−0Ł

R thickness of the layer of the moist material ðmŁ

t time variable ðsŁ

v temperature ð>CŁ

w moisture potential ð>MŁ

x� space variable ðmŁ[

Greek symbols

am convective moisture transfer coe.cient ðkg m−1 s−0

>M−0Ł

aq convective heat transfer coe.cient ðW m−1 K−0Ł

g9 density of the dry portion of the moist body ðkg m−2Ł

� Corresponding author] New F:5\ Jodhpur Colony\ Banaras

Hindu University\ Varanasi 110994\ India[

d thermogradient coe.cient ð>M K−0Ł

o ratio of vapour di}usion coe.cient to that of total

moisture di}usion or evaporation number

lm moisture conductivity coe.cient ðkg m−0 s−0 >M−0Ł

lq thermal conductivity coe.cient ðJ m−0 s−0 K−0Ł

r heat of phase change ðJ kg−0Ł[

Subscripts

s ambient

p equilibrium with ambient

9 initial condition[

0[ Introduction

The importance of heat and mass transfer in capillary

porous materials has increased in the last few decades

due to its wide industrial as well as research applications[

Besides its various terrestrial applications "e[g[\ ground

water pollution\ heat transfer and storage of solar energy

in the ground\ packed columns in chemical industries\

drying and multiphase ~ow under non!isothermal con!

ditions#\ it is being widely used in space research
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especially in devices for liquid and energy transfer "heat

pipes\ heat exchangers\ insulation of highly conducting

wire nets\ etc[# due to the fact that the performance of

capillary porous materials does not depend on a gravi!

tational _eld[ As a result there is a continuously increas!

ing research activity in the _eld of heat and mass transfer

in capillary porous media[ But because of the com!

plexities of the mechanism involved in the transport pro!

cesses through irregular void con_guration in porous

bodies\ only limited success has been achieved in mod!

elling the process[

In order to describe the history of moisture transfer in

capillary porous bodies\ the dependence on the relevant

material characteristics\ such as\ the topology of solid

matrix\ interface phenomena among solid\ liquid\

gaseous vapour and air and liquidÐvapour equilibria

must be taken into account[ The phenomena appropriate

for moisture\ pressure\ and enthalpy distributions are

coupled[ A di}usion theory with a linear or non!linear

coe.cient of di}usivity will not serve the purpose for

description of the behaviour of mass transfer in a capil!

lary porous body[ The transport of associated matter of

all phases and the transfer of enthalpy must be considered

simultaneously[ Therefore\ a general mathematical model

for multi!phase moisture transfer in capillary porous

bodies must be formulated[ Various theoretical models

have been proposed ð0Ð7Ł in the past[ Most of these

models have not been able to predict the drying rate and

the distribution of temperature and moisture potentials

for both hygroscopic and non!hygroscopic materials over

a wide range of boundary conditions and drying regimes[

Luikov ð1Ł developed a uniquely di}erent model for sim!

ultaneous heat and moisture transfer in capillary porous

materials\ which is based on non!equilibrium ther!

modynamics[ This model is applicable for both hygro!

scopic and non!hygroscopic materials[ It is interesting to

note that the model proposed by Krischer ð0Ł is identical

to that of Luikov and the model proposed by De!Vries

ð2Ł is similar to that of Luikov ð1Ł[ However\ the Luikov

system of equations is a non!linear system because the

transport coe.cients and the thermodynamic properties

"speci_c heat\ thermogradient coe.cient\ etc[# are func!

tions of either moisture content or temperature or both[

In order to make the system more mathematically trac!

table Luikov and Mikhailov ð8Ł suggested that if cal!

culation of time dependent heat and mass transfer is

carried out by zones\ in each of which the transport

coe.cients are taken as constant "average value for each

zone#\ then with the considerable simpli_cation of the

system of equations itself\ one may obtain good agree!

ment between calculation and experiment[ In doing so

the results arrived at and the results expected do not

match so well\ but on the other hand it is possible to

make a qualitative analysis of the in~uence of transfer

coe.cients on the moisture and temperature potentials[

The results obtained through such an approach are well

known ð09Ł[ Therefore\ an e.cient method of solution

for the linear system with constant transport coe.cients

plays an important role in solving the nonlinear system

of equations[ For linear problems formal exact solutions

were obtained by a number of workers[ Some of these

contributions were also summarized in the monographs

of Luikov ð1\ 00Ł Luikov and Mikhailov ð8Ł\ Mikhailov

and OÝzisik ð01Ł\ Shukla ð02Ł and others ð03\ 04Ł\ which

deal with basic mathematical tools behind such devel!

opments\ integral transforms method[ Later on\ Rossen

and Hayakawa ð05Ł\ Lobo et al[ ð06Ł\ Liu and Cheng ð07Ł

noticed that several of the early computational work

could be in error\ mainly for those results reported at the

early times\ because of noninclusion of complex roots in

such earlier contributions[ These authors reported

numerical di.culties in computing the complex con!

jugate characteristic roots\ con_ning their evaluations to

one single pair[ In view of the limited usefulness of the

formal exact solution\ Ribeiro et al[ ð08Ł proposed an

alternative approximate solution to Luikov equations in

linear formulation which does not require evaluation of

complex eigenvalues[

The present authors have developed a novel technique

that provides complete and satisfactory solutions to such

system subject to speci_ed initial and surface conditions[

Here it is applied to obtain the temperature and moisture

distributions during contact drying of a moist porous

sheet[ Further\ the complex characteristic roots are found

by a new technique ð19Ł which is a combination of the

bisection and NewtonÐRaphson methods[ This technique

evaluates simultaneously real as well as a number of pairs

of complex conjugate roots[ A set of bench mark results is

obtained[ The previous analytical solutions are critically

examined and compared with existing results\ and it has

been found that earlier results are in error due to non!

inclusion of the complex roots not accounted for in such

earlier contributions ð1\ 5\ 7\ 00Ð03\ 10Ł[ The importance

of the present study is] "i# our method of solution has

general application to the problems of simultaneous heat

and mass transfer in capillary porous bodies\ "ii# the

methodology for obtaining the real as well as complex

roots is quite di}erent from that of Lobo et al[ ð06Ł and

Liu and Cheng ð07Ł methods\ because it evaluates real

and a number of pairs of complex conjugate roots\ "iii#

numerical results obtained by the present technique may

serve to check the accuracy of any numerical methods

such as _nite di}erence and _nite element techniques

when applied to solving such types of problems[

1[ Problem formulation

The proposed approach is demonstrated for sim!

ultaneous heat mass transfer within a porous moist sheet

which is in contact with a hot plate[ Without loss of
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generality the problem formulation in dimensionless

form can be written as ð10Ł

1T"x\ t#

1t
�"0¦o Ko Lu Pn#

11T"x\ t#

1x1
−o Ko Lu

11u"x\ t#

1x1

"9 ³ x ³ 0\ t × 9#[ "0#

1u"x\ t#

1t
� −Lu Pn

11T"x\ t#

1x1
¦Lu

11u"x\ t#

1x1

"9 ³ x ³ 0\ t × 9#[ "1#

The initial and boundary conditions for the present study

are given as follows]

T"x\ 9# � `0"x#^ u"x\ 9# � `1"x#\ 9 ¾ x ¾ 0[ "2#

1T"9\ t#

1x
� −Kiq\ t × 9 "3#

1u"9\ t#

1x
−Pn

1T"9\ t#

1x
� 9\ t × 9 "4#

1T"0\ t#

1x
¦A0T"0\ t#¦B0u"0\ t# � f0"t#\ t × 9 "5#

1u"0\ t#

1x
¦A1

1T"0\ t#

1x
¦B1u"0\ t# � f1"t#\ t × 9[ "6#

The set of equations "0# and "1# have been solved by

Luikov and Mikhailov ð8Ł addressed to various types of

boundary conditions[ They have also examined a situ!

ation where the speci_c ~ux of mass varies continuously

with time[ Boundary conditions "5# and "6# represent

still more general cases where the source terms fj"t#\

" j � 0\ 1# are certain unknown functions of time\ to be

determined by the experiment[ Aj\ Bj " j � 0\ 1# are ther!

mophysical coe.cients\ which are functions of dimen!

sionless transfer coe.cients[

The dimensionless variables and the dimensionless

thermophysical coe.cients are de_ned as

x�
x�

R
\ dimensionless space variable

t�
aqt

R1
\ dimensionless time

T"x\ t# �
v"x�\ t#−v9

vs−v9

\ dimensionless temperature

u"x\ t# �
w9−w"x�\ t#

w9−wp

\ dimensionless moisture potential

Ko�
r"w9−wp#cm

cq"vs−v9#
\ Kossovich number

Lu�
am

aq

\ Luikov number

Pn�
d"vs−v9#

"w9−wp#
\ Posnov number

Biq �
aqR

lq

\ Biot number heat transfer

Bim �
amR

lm

\ Biot number for mass transfer

Kiq �
IqR

lq"vs−v9#
\ dimensionless heat flux

where aq\ am\ etc[ are de_ned in the Nomenclature[

2[ Solution procedure

The matrix di}erential equation is appealing by its

close similarity to the di}erential equation\ and in a way\

o}ers the possibility to unify the system given in "0#Ð"6#[

Therefore we have the system in the matrix notation as]

1Z"x\ t#

1t
� A

11Z

1x1
\ 9 ³ x ³ 0\ t × 9 "7#

subject to the initial and boundary conditions]

Z9 � Z"x\ 9# � 0
`0"x#

`1"x#1\ 9 ¾ x ¾ 0

1Z"9\ t#

1x
� Q � 0

−Kiq

−Pn Kiq1\ t × 9 "8#

N
1Z"0\ t#

1x
¦MZ"0\ t# � H"t#\ t × 9 "09#

where

Z"x\ t# � 0
T"x\ t#

u"x\ t#1
H"t# � 0

f0"t#

f1"t#1
A � 0

0¦o Ko Lu Pn −oKo Lu

−Lu Pn Lu 1
B � A−0

N � 0
0 9

A1 01
and

M � 0
A0 B0

9 B11[
For the boundary condition of the third kind\ the ther!

mophysical coe.cients assume the following values]

A0 � Biq\ A1 � Pn

B0 � −"0−o# Ko Lu Bim\ B1 � Bim

f0"t# � BiqVa"t#−"0−o# Ko Lu Bim\ f1"t# � Bim

where Va"t# is a dimensionless ambient temperature and

matrices A\ B\ M\ N and Q have their elements which are

functions of dimensionless transfer coe.cients[

The system under the Laplace transform provides]
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d1ZÞ"x\ s#

dx1
¦BZÞ"x\ s# � −BZ9"x#\ "9 ³ x ³ 0\ t × 9#

"00#

dZÞ"9\ s#

dx
�

QÞ

s
"01#

N dZÞ"0\ s#

dx
¦MZÞ"0\ s# � HÞ "s#[ "02#

Equation "00# is a nonhomogeneous matrix di}erential

equation therefore its solution is formidable[ However\ if

the general solution of the corresponding homogeneous

di}erential equation is known\ then the solution of the

matrix di}erential equation "00# can be arrived at by the

method of variation of parameters ð11Ł[ The method of

variation of parameters permits the solution of "00# sub!

ject to the conditions "01# and "02# in the form]

ZÞ"x\ s# � "cosh zBsx#CÞ0"s#

¦"sinh zBsx#CÞ1"s#¦GÞ "x\ s#

GÞ "x\ s# �
zB

zs g
X

ðsinh zBs"x−x?#ŁZ9"x?# dx?

CÞ1"s# � "Bs#−0:1 $
QÞ

s
−G\ x"9\ s#%

CÞ0"s# � ðNzBs sinh zBs¦M cosh zBsŁ−0KÞ"s#

KÞ"s# � HÞ "s#−NGÞ\x"0\ s#−MGÞ "0\ s#−"NzBs cosh zBs

¦M sinh zBs#"Bs#"Bs#−0:1 0
Q

s
−GÞ\ x"9\ s#1[ "03#

and GÞ\ x"x\ s# denotes the derivative with respect to x[

In view of Appendix A\ equation "03# assumes the

form]

ZÞ"x\ s# � 0
TÞ"x\ s#

u¹ "x\ s#1
where

TÞ"x\ s# �
ðf¹ 2"s#QÞ1"s#−f¹ 3"s#PÞ1"s#−SÞ0"s#Ł

DÞ"s#
cosh w0zsx

¦
ðf¹ 3"s#PÞ0"s#−f¹ 2"s#QÞ0"s#−SÞ1"s#Ł

DÞ"s#
cosh w1zsx

¦CÞ�2"s# sinh w0zsx¦CÞ�3"s# sinh w1zsx¦c¹ 0"x\ s#

"04#

u¹ "x\ s# �

−
0

o Ko $
ðf¹ 2"s#QÞ1"s#−f¹ 3"s#PÞ1"s#−SÞ0"s#Ł"0−w1

0#

DÞ"s#

×cosh w0zsx

¦
ðf¹ 3"s#PÞ0"s#−f¹ 2"s#QÞ0"s#−SÞ1"s#Ł"0−w1

1#

DÞ"s#

×cosh w1zsx

¦CÞ�2"0−w1
0# sinh w0zsx¦CÞ�3"0−w1

1# sinh w1zsx%
¦c¹ 1"x\ s# "05#

where SÞ0"s#\ SÞ1"s#\ etc[ are given in Appendix A[

Employing the expansion theorem and convolution

property of the Laplace transform ð13Ł\ we have the orig!

inal of ZÞ"x\ s# in the form]

Z"x\ t# � 0
T"x\ t#

u"x\ t#1
T"x\ t# � s

1

j�0

"−0#2−jðW2−j"x\ t#�f2"t#

−Y2−j"x\ t#�f3"t#Ł− s
�

n�0

ðSn0"un# cos w0unx

¦Sn1"un# cos w1unxŁ e−u1
n
t¦"R0w0¦R1w1#x¦c0"x\ t#[

"06#

u"x\ t# �−
0

oKo
s
1

j�0

"−0#2−jðW2−j"x\ t#�f2"t#

−Y2−j"x\ t#�f3"t#Ł"0−w1
j #

−
0

oKo
s
�

n�0

ðSn0"un#"0−w1
0# cosw0unx

¦Sn1"un#"0−w1
1# cosw1unxŁ e−u1

n
t

−
0

oKo
ðR0w0"0−w1

0#¦"R1w1"0−w1
1#Łx¦c1"x\ t#

"07#

where Sn0\ Sn1\ etc[ are given in Appendix B[ The un

"n � 0\ 1\ [ [ [ # are roots of characteristic equation

E"un# � 9\ where

E"un# � Pn0Qn1−Pn1Qn0[ "08#

In view of the initial and boundary conditions\ the general

expressions obtained for transfer potentials describe a

large class of heat mass transfer phenomena including

the radiative heat transfer[ On specializing transport

coe.cients involved in the boundary conditions\ the solu!

tion to numerous speci_c one!dimensional\ time depen!

dent heat and mass di}usion problems encountered in a

large variety of applications may be obtained as a special

case[

3[ Application

In many practical situations without loss of generality

ð1\ 00\ 01\ 07Ł\ the initial distributions and source func!

tions are assumed to be constant[ The explicit expressions

for transfer potentials in case of the boundary conditions

of the third kind at x � 0 can easily be written from the

general results "06# and "07# after ignoring the inter!

mediate steps as follows]
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T"x\ t# � 0−K0−K1¦"R0W0¦R1W1#x¦ s
�

n�0

s
1

j�0

"A�nj¦Gn"3¦j## cos wjunx e−u1
n
t "19#

u"x\ t# � 0¦
0

o Ko
ððK0"0−w1

0#¦K1"0−w1
1#

−"R0W0"0−w1
0#¦"R1W1"0−w1

1##xŁŁ

−
0

o Ko
s
�

n�0

s
1

j�0

"A�nj¦Gn"3¦j##"0−w1
j # cos wjunx e−u1

n
t

"10#

where K0\ K1\ etc[ are given in Appendix B[

4[ Discussion

It can be seen from equation "08# that there is an

in_nite number of roots u0\ u1\ [ [ [ \ and each subsequent

root is greater than the previous one[ The roots have been

computed with the accuracy of seven decimal places by

using a novel technique which evaluates real as well as

complex roots and is quite di}erent from the numerical

procedure adopted by Lobo et al[ ð06Ł[ This technique is

a combination of the bisection method which determines

the real roots and NewtonÐRaphson method utilising the

complex arithmetic determines the complex roots[ The

numerical procedure chosen in this paper is promising

and attractive in the sense that it requires only one input

parameter for the evaluation of a number of pairs of

complex conjugate roots\ whereas Lobo et al[ ð06Ł

employed a procedure using IMS Library "Zanlyt# to

compute the complex roots of the transcendental equa!

tion "08#[ In order to check these results with a di}erent

scheme\ the Downhill method which evaluates the com!

plex roots of the transcendental equation was employed[

Both these methods needed a starting value of the com!

plex eigenvalue as an input parameter[ To select a starting

value\ one has to search for a domain where a pair of

complex conjugate roots might exist[ This was deter!

mined by them employing the method by Ward[ Utilizing

these methods\ they could _nd only one pair of complex

conjugate roots after an exhaustive search[ Liu and

Cheng ð07Ł employed the procedure adopted by Mu�ller[

They also obtained only one pair of complex conjugate

roots[ In order to study the in~uence of the inclusion of

the complex roots on the dimensionless temperature and

moisture distribution and also on the local rate of drying\

the following dimensionless parameters as reported in

Mikhailov and Shishedjiev ð10Ł and Lobo et al[ ð06Ł with

some additional values of Bim are considered]

o � 9[1\ 9[7^ Lu � 9[3\ Pn � 9[5\ Ko � 4[9\

Kiq � 9[8\ Biq � 1[4\ Bim � 0[9\ 1[4\ 4[9\ 09[9[

It is noticed that for each set of the values of the evap!

oration number o\ the computational technique

implemented on IBM compatible PC:AT 275 evaluates

39 real as well as a number of pairs of complex conjugate

roots and takes less than 59 s of CPU time which is shown

in Table 0[ Here it is interesting to note that out of 39

roots\ for the dimensionless mass transfer coe.cients of

interest Bim � 0\ 1[4\ 4 and 09\ we get\ respectively\ one\

three\ three and nine pairs of complex conjugate roots[

In order to verify whether these complex roots occurring

in Table 0 satisfy the transcendental equation or not\ we

set u � a¦ib and E"u# � E0"a\ b#¦iE1"a\ b# where a\ b\

E0 and E1 are real numbers[ The numerical values of

E0"a\ b# and E1"a\ b# obtained by this technique with some

additional complex roots by extending the domain in the

u!complex plane are shown in Table 1[ The numerical

values thus evaluated may be considered to be zero within

the accuracy of our computations showing that these

are the roots of the transcendental equation E"u# � 9[

Figures 0 and 1 exhibit the in~uence of the inclusion

of the complex roots on the temperature and moisture

distribution at various dimensionless times t � 9[94\ 9[1\

9[3\ 0[5[ The dotted curves denote the results cor!

responding to the real roots only whereas the continuous

curves represent the results based on the use of both the

real and the complex roots[ Obviously the contribution

of complex roots is more pronounced for early times and

compares well with that of Lobo et al[ ð06Ł where they

have considered only one pair of complex conjugate

roots[ The e}ect of inclusion of complex root on the local

rate of drying is also depicted in Fig[ 2[ It is noticed

that for early times\ it has signi_cant in~uence[ Similar

behaviour is also observed in the case of o � 9[7[ The

in~uence of the inclusion of the complex roots for the

value of o � 9[7 on the temperature and moisture dis!

tribution are shown in Figs 3 and 4 and it is found that

here also for early times results are signi_cant and do not

compare with that of Mikhailov and Shishedjiev ð10Ł

because they have overlooked the inclusion of complex

roots in their solution[ The in~uence of other dimen!

sionless parameters on transfer potentials and rate of

drying has also been studied "not shown here# and a

similar behaviour is found[ It is therefore essential to

include the complex roots in order to get a qualitatively

true picture of the temperature and moisture distri!

butions\ their average values and the local and average

rate of drying[ This shows that an analytic solution of

the Luikov system of coupled heat and moisture di}usion

problems addressed to the linear type of boundary con!

ditions have all to be reviewed since it seems that under

certain conditions the transcendental equations have

complex roots which are not included in the original

computations[

5[ Conclusion

The solutions for the dimensionless temperature and

moisture distribution obtained by the matrix calculus
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Table 0

Characteristic roots of the transcendental equation P0"u# ( Q1"u#−P1"u#�Q0"u# � 9 for di}erent values of Bim
"o � 9[1\ K9 � 4[9\ Pn � 9[5\ Lu � 9[3\ Biq � 1[4#

Bim � 0[99 Bim � 1[49 Bim � 4[99 Bim � 09[99

9[4040776 9[5272098 9[5825933 9[6122375

0[2329920 0[5720865 0[7961699 0[8156728

0[6806156 29[0518788 29[1637130 29[2903508

2[4134210 2[5045124 2[6964624 2[6713303

3[1164894 3[2526374 3[6241237 3[8826978

4[0579552 4[0028577 3[8035227 29[3076146

5[7865846 5[8088434 5[8383286 5[8772593

6[5146155 6[6094138 6[7664155 7[1740395

7[4780345 7[4464228 7[3761966 29[1346645

09[2002358 09[2033182 09[2078914 09[2148365

00[0500435 00[1163802 00[2384897 00[6191107

01[9044181 00[8811594 00[8320507 29[0205650

02[6237779 02[6219263 02[6165792 02[6190584

03[6327016 03[6880030 03[8990816 04[1909552

04[3324645 04[3131223 04[2729107 29[0051791

06[0507957 06[0469320 06[0384035 06[0246671

07[2367656 07[2852458 07[3768390 07[6909256

07[7611413 07[7432450 07[7024398 29[0328482

19[4890504 19[4737612 19[4652108 19[4599874

10[8525426 11[9986950 11[0050164 11[1001087

11[2998225 11[1702359 11[1078968 29[0595940

13[9081295 13[9028171 13[9941060 12[8771977

14[4771797 14[5585132 14[5778869 14[6165575

14[6166962 29[9055450 29[9896978 29[0366421

16[3375874 16[3324694 16[3249311 16[3079056

18[0748036 18[0851674 18[1024725 18[1371858

29[9039831 29[9276673 29[9455914 29[9582214

29[7673975 29[7624006 29[7541755 29[7374591

21[4846057 21[4866840 21[5996190 21[5949888

21[7238512 21[7404682 21[7688374 21[8275596

23[2971642 23[2925099 23[1846941 23[1682485

25[9132842 25[9122908 25[9105357 25[9077315

25[3561535 25[3743944 25[4045696 25[4653607

26[6271362 26[6226760 26[6150545 26[6090397

28[3428882 28[3408111 28[3375559 28[3317065

39[0991965 39[0068803 39[0365769 39[1963730

30[0571897 30[0528811 30[0454672 30[0395825

31[7727859 31[7703361 31[7664174 31[7691275

32[6239354 32[6400126 32[6686543 32[7268529

33[4872794 33[4830687 33[4757384 33[4696413

2] Imaginary part of complex root with real part just above it

form su.ciently general expressions from which solu!

tions to many speci_c one!dimensional\ time dependent

heat and mass di}usion problems encountered in a large

variety of applications may be obtained as a particular

case[ The roots _nding procedure is attractive in the sense

that it evaluates real as well as a number of pairs of

complex conjugate roots of the transcendental equation[

The inclusion of the complex eigenvalues in the analysis

is felt to be of practical importance because the complex

roots have been overlooked in the earlier contributions[
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Table 1

Complex roots of the transcendental equation P0"u# ( Q1"u#−P1"u#�Q0"u# � 9 for di}erent values of Bim
"o � 9[1\ K9 � 4[9\ Lu � 9[3\ Pn � 9[5\ Biq � 1[4#

Bim Complex root � a2ib E"u# � E0"a\ b#2iE1"a\ b#

a b E0 E1

0[99 18[0748036 9[9039831 9[999999999999 9[999999999999

0[99 038[1159698 9[9936536 −9[999999999990 9[999999999999

1[49 0[5720865 9[0518788 9[999999999531 9[999999999451

1[49 14[5585132 9[9055450 −9[999999999096 −9[999999999928

1[49 18[0851674 9[9276673 −9[999999993672 −9[999999990240

1[49 47[2915129 9[9118814 −9[999999999999 −9[999999999999

1[49 038[1179707 9[9982229 −9[999999999999 −9[999999999996

4[99 0[7961699 9[1637130 9[999999999999 9[999999999999

4[99 14[5778869 9[9896978 9[999999999999 9[999999999991

4[99 18[1024725 9[9455914 −9[999999999990 9[999999999990

4[99 47[2000867 9[9314383 −9[999999999991 9[999999999990

4[99 038[1203224 9[9021733 9[999999999999 −9[999999999999

4[99 187[3391370 9[9955626 9[999999999999 9[999999999999

09[99 0[8156728 9[2903508 −9[999999999990 −9[999999999999

09[99 3[8826978 9[3076146 −9[999999999999 9[999999999999

09[99 7[1740395 9[1346645 −9[999999999991 9[999999999999

09[99 00[6191107 9[0205650 9[999999999916 9[999999999906

09[99 04[1909552 9[0051791 −9[999999999999 −9[999999999999

09[99 07[6909256 9[0328482 −9[999999999999 9[999999999999

09[99 11[1001087 9[0595940 9[999999999999 9[999999999990

09[99 14[6165575 9[0366421 9[999999999240 −9[999999999176

09[99 18[1371858 9[9582214 9[999999999999 −9[999999999999

09[99 47[2172345 9[9516964 9[999999992030 −9[999999999841

09[99 76[3359254 9[9283538 9[999999999999 −9[999999999999

09[99 038[1270264 9[9058540 9[999999999077 −9[999999999064

09[99 067[2697637 9[9198859 −9[999999999999 9[999999999999

09[99 187[3324874 9[9020346 9[999999999999 9[999999999999

Appendix A

The matrix B is diagonalizable and it can be expressed

in terms of characteristic roots and characteristic vectors[

In the light of this\ B can be written as ð12Ł

B � PDP−0

where D is a diagonal matrix of order 1×1 containing

characteristic roots l0 and l1[

l0 � w1
0 �

0

1 600¦o Ko Pn¦
0

Lu1
¦$00¦o Ko Pn¦

0

Lu1
1

−
3

Lu%
0:1

7
l1 � w1

1 �
0

1 600¦o Ko Pn¦
0

Lu1

−$00¦o Ko Pn¦
0

Lu1
1

−
3

Lu%
0:1

7
and P is the matrix of eigenvectors obtained from B as

P � 2
0 0

−
"0−w1

0#

o Ko
−

"0−w1
1#

o Ko
3

and

P−0 �

F

G

G

G

G

f

−
"0−w1

1#

o Ko
−0

"0−w1
0#

o Ko
0

J

G

G

G

G

j

?"w1
1−w1

0#"o Ko#−0[

In view of this we can write

B1 � B = B� PD1P−0

and
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Fig[ 0[ E}ect of inclusion of the complex roots on dimensionless temperature vs[ dimensionless distance "o � 9[1^ Ko � 4[9^ Lu � 9[3^

Pn � 9[5^ Biq � 1[4^ Bim � 1[4^ Kiq � 9[8#[

Fig[ 1[ E}ect of inclusion of the complex roots on dimensionless moisture potential vs[ dimensionless distance "o � 9[1^ Ko � 4[9^

Lu � 9[3^ Pn � 9[5^ Biq � 1[4^ Bim � 1[4^ Kiq � 9[8#[
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Fig[ 2[ E}ect of inclusion of the complex roots on dimensionless rate of drying vs[ dimensionless time "o � 9[1^ Ko � 4[9^ Lu � 9[3^

Pn � 9[5^ Biq � 1[4^ Bim � 1[4^ Kiq � 9[8#[

Fig[ 3[ E}ect of inclusion of the complex roots on dimensionless temperature vs[ dimensionless distance "o � 9[7^ Ko � 4[9^ Lu � 9[3^

Pn � 9[5^ Biq � 1[4^ Bim � 1[4^ Kiq � 9[8#[
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Fig[ 4[ E}ect of inclusion of the complex roots on dimensionless moisture potential vs[ dimensionless distance "o � 9[7^ Ko � 4[9^

Lu � 9[3^ Pn � 9[5^ Biq � 1[4^ Bim � 1[4^ Kiq � 9[8#[

B2 � B1 = B� PD2P−0[

The above can be extended to yield

f"B# � s
�

n�0

anB
n � P 0 s

�

n�0

anD
n1P−0

� P 0
f"l0# 9

9 f"l1#1P−0[ "A0#

The above expression provides an e.cient way to

evaluate a function of diagonalizable matrix in terms of

eigenvalues and eigenvectors[ Further\ the eigenvalues of

B are real and positive\ we can write

zB � P 0
w0 9

9 w11P−0

and

B−0:1 � P 0
w−0

0 9

9 w−0
1
1P−0 "A1#

and in view of "A0#\ we have

f"zB# � P 0
f"w0# 9

9 f"w1#1P−0\ etc[ "A2#

For instance

sinh zBs �P 0
sinh w0zs 9

sinh w1zs1P−0\ etc[

"A3#

Utilizing these concepts to the solution in the matrix form

given in "03#\ we get the result mentioned in "04# and

"05#\ where SÞ0\ SÞ1\ etc[ are obtained in the form]

SÞ0"s# �CÞ�2"s#GÞ2"s#¦CÞ�3"s#GÞ3"s#

SÞ1"s# �CÞ�2"s#GÞ0"s#¦CÞ�3"s#GÞ1"s#

GÞ0"s# �QÞ2"s#PÞ0"s#¦PÞ2"s#QÞ0"s#

GÞ1"s# �QÞ3"s#PÞ0"s#−PÞ3"s#QÞ0"s#

GÞ2"s# �PÞ2"s#QÞ1"s#−PÞ1"s#QÞ2"s#

GÞ3"s# �PÞ3"s#QÞ1"s#−PÞ1"s#QÞ3"s#

c¹ 0"x\ s# �r¹0"s# g
x

c¹ "x?s# sinhw0zs"x−x?# dx?

¦r¹1"s# g
x

c¹ "x?s# sinhw1zs"x−x?# dx?

c¹ 1"x\ s# �
"Dx−s#c¹ 0"x\ s#¦"oKo`1¦`0#

oKo s

c¹ "x\ s# �−Dx"oKo`1¦`0#¦
s`0

Lu
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f¹ 2"s# � ðc¹ 0"s#−"c¹ 0\x"0\ s#¦A0c¹ 0"0\ s#¦B1c¹ 1"0\ s##Ł

f¹ 3"s# � ðc¹ 1"s#−"c¹ 1\x"0\ s#¦A1c¹ 0\x"0\ s#¦B1c¹ 1"0\ s##Ł

r¹0"s# �
0

w0"w1
1−w1

0#szs

r¹1"s# �
0

w1"w1
1−w1

0#szs

Dx �
11

1x1

R0"s# �
Kiq"0−w1

1¦oKoPn#

w0"w1
1−w1

0#

R1"s# �
Kiq"0−w1

0¦oKoPn#

w0"w1
0−w1

1#

PÞj"s# �wjzs sinhwjzs¦M " j#
0 coshwjzs

QÞj"s# �M " j#
1 wjzs sinhwjzs¦M " j#

2 coshwjzs

PÞj¦1"s# �wjzs coshwjzs¦M " j#
0 sinhwjzs

QÞj¦1"s# �M " j#
1 wjzs coshwjzs¦M " j#

2 sinhwjzs

M " j#
0 �A0−B0

"0−w1
j #

oKo

M " j#
1 �A1−

"0−w1
j #

oKo

M " j#
2 �−B1

"0−w1
j #

oKo
" j�0\ 1#

C�2"s# �−
R0

szs

and

C�3"s# �
R1

szs
[

Appendix B

The elements of ZÞ"x\ s# contain the terms f¹ 2"s#\ f¹ 3"s#\

the true nature of which is not yet de_ned[ Therefore\ in

order to determine the original of ZÞ"x\ s#\ one will require

the expansion theorem where the expression contains

all the well!de_ned terms such as PÞj\ QÞj\ etc[ and the

convolution theorem for the terms f¹ 2"s#\ f¹ 3"s#[

Employing these theorems ð13Ł\ we obtain the original

of ZÞ"x\ s# in the form

Z"x\ t# � 0
T"x\ t#

u"x\ t#1 "B0#

where the transfer potentials T"x\ t# and u"x\ t# are given

by "04# and "05# with

Sn0 �
R0Gn2"un#¦R1Gn3"un#

fn

Sn1 �
R0Gn0"un#¦R1Gn1"un#

fn

W2−j"x\ t#�f2"t# � s
�

n�0

Qn"2−j# cos wjunx

fn

×g
t

9

e−u1
n
t?f2"t−t?# dt?

Y2−j"x\ t#�f3"t# � s
�

n�0

Pn"2−j# cos wjunx

fn

×g
t

9

e−u1
n
t?f3"t−t?# dt?

Pnj � M " j#
0 cos wjun−wjun sin wjun

Qnj � M " j#
2 cos wjun−M " j#

1 wjun sin wjun

Pn" j¦1# � wjun cos wjun¦M " j#
0 sin wjun

Qn" j¦1# � M " j#
1 wjun cos wjun¦M " j#

2 sin wjun

fn � P�0"un#Q1"un#¦P0"un#Q�1"un#

−P�1"un#Q0"un#−P1"un#Q�1"un#

P�nj �
wj

1un

ð"M " j#
2 ¦M " j#

1 # sin wjun

¦M " j#
1 wjun cos wjunŁ "B1#

and un "n � 0\ 1\ 2\ [ [ [ # are the roots of the characteristic

equation

P0"u#Q1"u#−P1"u#Q0"u# � 9[ "B2#

As a particular case when energy and mass transfer takes

place according to the convective law and the initial tem!

perature and moisture distributions are constant then the

source terms and aggregate of the dimensionless thermo!

physical coe.cients assume the form]

ZÞ"x\ 9# � 9\ f0"t# � f9
0 � Biq−"0−o# Ko Lu Bim

f1"t# � f9
1 � Bim\ A0 � Biq\ A1 � −Pn

B0 � −"0−o# Ko Lu Bim\ B1 � Bim[

Making use of these values in the general results "06# and

"07# we get after a series of algebraic manipulation\ the

results given in "19# and "10# where

K0 �

R0ð"0¦M "0#
0 #M "1#

2 −"M "0#
1 ¦M "1#

2 #M "1#
0 Łw0

¦R1ð"0¦M "1#
0 #M "0#

2 −"M "1#
1 ¦M "1#

2 #M "1#
0 Łw1

"M "0#
0 M "1#

2 −M "1#
0 M "1#

2 #

K1 �

R0ð"M "0#
1 ¦M "0#

2 #M "0#
0 −"0¦M "0#

0 #M "0#
2 Łw0

¦R1ð"M "1#
1 ¦M "1#

2 #M "0#
0 −"0¦M "1#

0 #M "0#
2 Łw1

"M "0#
0 M "1#

2 −M "1#
0 M "0#

2 #

A�nj � "−0#j
ðf9

0Qn"2−j#−f9
1Pn"2−j#Ł

u1
n fn

\ " j � 0\ 1#

Gn4 �
R0"Pn2Qn1−Pn1Qn2#−R1"Pn3Qn1−Pn1Qn3#

u2
n fn

"B3#

and
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Gn5 �
R0"Qn2Pn0−Pn2Qn0#−R1"Pn0Qn3−Pn3Qn0#

u2
n fn

[
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